Edward B. Barbier 25 "Water and growth in developing countries" *Handbook of Water Economics*

> Nobuhiko Nakazawa Econ267

February 28, 2017

Background

• Growing global water demand is forecast to occur mainly in developing countries.

Growing global water demand

- The world is experiencing increased freshwater demand of about 64 billion m³ per year (WWAP, 2012)
- Global water demand is anticipated to rise significantly, from about 3500 km³ in 2000 to nearly 5500 km³ in 2050 (OECD,2012)
- Water withdrawals are predicted to increase by 50 percent by 2025 in developing countries (UNEP, 2007)

Global Water Demand

Source: OECD(2012)

Note: GLOBAL WATER DEMAND (FRESHWATER WITHDRAWALS): The OECD's 2012 Global Environmental Outlook's Baseline Scenario, 2000 AND 2050

BRIICS (Brazil, Russia, India, Indonesia, China, South Africa); OECD (Organisation for Economic Co-operation and Development); RoW (rest of world). This figure only measures 'blue water' demand and does not consider rainfed agriculture.

Motivation

 These trends in relative water use in developing economies raise the possibility that increasing water use may affect the growth of these economies.

Influences of increased water utilization on growth

- The influences of increased water utilization on growth were explored by Barbier (2004)
- positive influence
 - using 'freshwater capital' is beneficial to the economy, as this publicly provided good serves as a productive input to private producers.
- Negative influence
 - the public investments in water institutions and infrastructure necessary to secure freshwater supplies for utilization are a cost
 - these costs rise as a country appropriates and purchases a greater share of aggregate economic output 6

Hypotheses

- A key hypothesis that growth is positively influenced by the contribution of increased water use to productivity, leading to an <u>inverted-U relationship</u> between economic growth and the rate of water utilization.
- The alternative hypothesis is that growth could decline with the rate of water utilization, or have a <u>U-shaped relationship</u> with water use.

Contribution

- Estimate the relationship between water and growth
- a panel analysis for 112 developing countries from the 1970s through the 2000s
- Find U-shaped relationship

Empirical model

•
$$g_{t, t+5} = F(y_t, h_t w_t)$$

- g_{t, t+5}: a country's five-year average per capita growth rate, beginning at initial year t
- $-Y_t$: per capita GDP
- h_t : human capital
- w_t: water withdrawal

Control variables

- economic variables
 - the ratio of domestic investment to GDP
 - the extent of international openness
 - agricultural share of GDP
- geographical variables
 - land or surface area

Data

- water data
 - AQUASTAT (FAO, 2013)
- other economic and geographical data
 - World Data Bank
 - UNDP
 - UNESCO
 - Socrata Open Data

Panel analysis of water and economic growth in developing economies, 1970–2012

Explanatory variables	Estimations ^b						
	(1)	(2)	(3)	(4)	(5)		
Constant	71.715 (8.598)**	72.32 (8.727)**	41.838 (4.958)**	21,023 (1.191)	21.351 (1.128)		
Rate of water utilization, year t	-10.203 (-1.792)†	-6.511 (-2.476)**	-20.463 (-2.950)**	-21.206 (-3.108)**	-18.194 (-2.615)**		
Rate of water utilization, year t squared	3.305 (0.720)	(2.470)	15.994 (2.476)*	16.092 (2.537)*	13.869 (2.164)*		
Log GDP per capita (constant 2005 US\$), year t	-8.044 (-7.632)**	-8.099 (-7.715)**	-4.460 (-4.180)**	-4.558 (-4.325)**	-4.622 (-4.410)**		
Log of fertility rate (births per woman), year t - 5	-7.91 (-4.713)**	-8.027 (-2.629)**	-6.446 (-4.053)**	-6.914 (-4.383)**	-6.847 (-4.358)**		
Average investment (% of GDP), years t, t - 5	(4.715)	(2.02)	0.068 (1.863)†	0.087 (2.359)*	0.081 (2.199)*		
Trade openness (trade % of GDP), year $t - 5$			-0.014 (-1.214)	-0.017 (-1.509)	-0.018 (-1.632) †		
Agriculture value added (% of GDP), year t – 5			0.108 (2.603)**	0.109 (2.683)**	0,110		
Log of surface area (sq. km)			(2.005)	1.886	(2.715)** 1.885 (1.580)		

Dependent variable: five-year average annual growth (%) of per capita income $(g_{1,1} + 5)$

Main determinants on economic growth in developing economies, 1970–2012

Explanatory variables	Mean	Median	Std dev.	Impact ^b
Rate of water utilization, year t	0.214	0.054	0.458	-5.611
Log GDP per capita (constant 2005 US\$), year t	7.123	7.153	1.029	-4.756
Log of fertility rate (births per woman), year $t = 5$	1.307	1.326	0.493	-3.379
Average investment (% of GDP), years $t, t = 5$	22.773	21.904	8.431	0.684
Trade openness (trade % of GDP), year $t = 5$	71.976	63.470	38.839	-0.698
Agriculture value added (% of GDP), year $t = 5$	23.138	19.991	13.557	1.487
GDP per capita (constant 2005 US\$), year t	\$1990	\$1279	\$1898	
Fertility rate (births per woman) in year $t - 5$	4.498	4.357	1.899	

Note: The scatter plot is based on the regression sample (254 observations) of estimation 5 in Table 25.1. The dotted line represents the partial relation between the growth rate of per capita income and the rate of water utilization based on estimation 5 and applied to the sample, and with all other variables of the estimation evaluated at their means. 14

Critique

- Freshwater supplies and use rates vary considerably across the regions within a country.
- Many rivers, lakes, groundwater aquifers and other water bodies often cross political boundaries.
- Freshwater availability could be more problematic for key sectors in developing countries.
- U-shape?

Conclusion

- Increasing rates of water utilization in most developing countries have a significant and negative impact on overall economic growth.
- Freshwater 'capital' should be included as an additional factor influencing growth.
- The U-shaped relationship appears to be dominant.